Factor V Leiden

Description

Factor V Leiden thrombophilia is an inherited disorder of blood clotting. Factor V Leiden is the name of a specific gene mutation that results in thrombophilia, which is an increased tendency to form abnormal blood clots that can block blood vessels.

People with factor V Leiden thrombophilia have a higher than average risk of developing a type of blood clot called a deep venous thrombosis (DVT). DVTs occur most often in the legs, although they can also occur in other parts of the body, including the brain, eyes, liver, and kidneys. Factor V Leiden thrombophilia also increases the risk that clots will break away from their original site and travel through the bloodstream. These clots can lodge in the lungs, where they are known as pulmonary emboli. Although factor V Leiden thrombophilia increases the risk of blood clots, only about 10 percent of individuals with the factor V Leiden mutation ever develop abnormal clots.

The factor V Leiden mutation is associated with a slightly increased risk of pregnancy loss (miscarriage). Women with this mutation are two to three times more likely to have multiple (recurrent) miscarriages or a pregnancy loss during the second or third trimester. Some research suggests that the factor V Leiden mutation may also increase the risk of other complications during pregnancy, including pregnancy-induced high blood pressure (preeclampsia), slow fetal growth, and early separation of the placenta from the uterine wall (placental abruption). However, the association between the factor V Leiden mutation and these complications has not been confirmed. Most women with factor V Leiden thrombophilia have normal pregnancies.

 Frequency

Factor V Leiden is the most common inherited form of thrombophilia. Between 3 and 8 percent of people with European ancestry carry one copy of the factor V Leiden mutation in each cell, and about 1 in 5,000 people have two copies of the mutation. The mutation is less common in other populations.

 Causes

A particular mutation in the F5 gene causes factor V Leiden thrombophilia. The F5 gene provides instructions for making a protein called coagulation factor V. This protein plays a critical role in the coagulation system, which is a series of chemical reactions that forms blood clots in response to injury.

The coagulation system is controlled by several proteins, including a protein called activated protein C (APC). APC normally inactivates coagulation factor V, which slows down the clotting process and prevents clots from growing too large. However, in people with factor V Leiden thrombophilia, coagulation factor V cannot be inactivated normally by APC. As a result, the clotting process remains active longer than usual, increasing the chance of developing abnormal blood clots.

Other factors also increase the risk of developing blood clots in people with factor V Leiden thrombophilia. These factors include increasing age, obesity, injury, surgery, smoking, pregnancy, and the use of oral contraceptives (birth control pills) or hormone replacement therapy. The risk of abnormal clots is also much higher in people who have a combination of the factor V Leiden mutation and another mutation in the F5 gene. Additionally, the risk is increased in people who have the factor V Leiden mutation together with a mutation in another gene involved in the coagulation system.

 Inheritance Pattern

The chance of developing an abnormal blood clot depends on whether a person has one or two copies of the factor V Leiden mutation in each cell. People who inherit two copies of the mutation, one from each parent, have a higher risk of developing a clot than people who inherit one copy of the mutation. Considering that about 1 in 1,000 people per year in the general population will develop an abnormal blood clot, the presence of one copy of the factor V Leiden mutation increases that risk to 3 to 8 in 1,000, and having two copies of the mutation may raise the risk to as high as 80 in 1,000.

Factor II Prothrombin 

 Description

Prothrombin thrombophilia is an inherited disorder of blood clotting. Thrombophilia is an increased tendency to form abnormal blood clots in blood vessels. People who have prothrombin thrombophilia are at somewhat higher than average risk for a type of clot called a deep venous thrombosis, which typically occurs in the deep veins of the legs. Affected people also have an increased risk of developing a pulmonary embolism, which is a clot that travels through the bloodstream and lodges in the lungs. Most people with prothrombin thrombophilia never develop abnormal blood clots, however.

Some research suggests that prothrombin thrombophilia is associated with a somewhat increased risk of pregnancy loss (miscarriage) and may also increase the risk of other complications during pregnancy. These complications may include pregnancy-induced high blood pressure (preeclampsia), slow fetal growth, and early separation of the placenta from the uterine wall (placental abruption). It is important to note, however, that most women with prothrombin thrombophilia have normal pregnancies.

 Frequency

Prothrombin thrombophilia is the second most common inherited form of thrombophilia after factor V Leiden thrombophilia. Approximately 1 in 50 people in the white population in the United States and Europe has prothrombin thrombophilia. This condition is less common in other ethnic groups, occurring in less than one percent of African American, Native American, or Asian populations.

 Causes

Prothrombin thrombophilia is caused by a particular mutation in the F2 gene. The F2 gene plays a critical role in the formation of blood clots in response to injury. The protein produced from the F2 gene, prothrombin (also called coagulation factor II), is the precursor to a protein called thrombin that initiates a series of chemical reactions in order to form a blood clot. The particular mutation that causes prothrombin thrombophilia results in an overactive F2 gene that causes too much prothrombin to be produced. An abundance of prothrombin leads to more thrombin, which promotes the formation of blood clots.

Other factors also increase the risk of blood clots in people with prothrombin thrombophilia. These factors include increasing age, obesity, trauma, surgery, smoking, the use of oral contraceptives (birth control pills) or hormone replacement therapy, and pregnancy. The combination of prothrombin thrombophilia and mutations in other genes involved in blood clotting can also influence risk.

 Inheritance Pattern

The risk of developing an abnormal clot in a blood vessel depends on whether a person inherits one or two copies of the F2 gene mutation that causes prothrombin thrombophilia. In the general population, the risk of developing an abnormal blood clot is about 1 in 1,000 people per year. Inheriting one copy of the F2 gene mutation increases that risk to 2 to 3 in 1,000. People who inherit two copies of the mutation, one from each parent, may have a risk as high as 20 in 1,000.

MTHFR 

 Normal Function

The MTHFR gene provides instructions for making an enzyme called methylenetetrahydrofolate reductase. This enzyme plays a role in processing amino acids, the building blocks of proteins. Methylenetetrahydrofolate reductase is important for a chemical reaction involving the vitamin folate (also called vitamin B9). Specifically, this enzyme converts a form of folate called 5,10-methylenetetrahydrofolate to a different form of folate called 5-methyltetrahydrofolate. This is the primary form of folate found in blood, and is necessary for the multistep process that converts the amino acid homocysteine to another amino acid, methionine. The body uses methionine to make proteins and other important compounds.

 Health Conditions Related to Genetic Changes

 Homocystinuria

 Age-related hearing loss

 Alopecia areata

 Anencephaly

 Spina bifida

 Other disorders

Polymorphisms in the MTHFR gene can alter or decrease the activity of methylenetetrahydrofolate reductase, leading to a mild increase of homocysteine in the blood (hyperhomocysteinemia). The two MTHFR gene polymorphisms that are the most common and the most frequently studied are 677C>T and a change that replaces the nucleotide adenosine with the nucleotide cytosine at position 1298 (written as 1298A>C).

An increase in homocysteine levels caused by MTHFR gene polymorphisms have been studied as possible risk factors for a variety of common conditions. These include high blood pressure (hypertension), blood clots, pregnancy loss, psychiatric disorders, and certain types of cancer. Research indicates that individuals who have the 677C>T polymorphism on both copies of the MTHFR gene have an increased risk of developing vascular disease, including heart disease and stroke. The 677C>T polymorphism has also been suggested as a risk factor for cleft lip and palate, a birth defect in which there is a split in the upper lip and an opening in the roof of the mouth.

Studies of MTHFR gene variations in people with these disorders have had mixed results, with associations found in some studies but not in others. Therefore, the role that changes in the MTHFR gene play in these disorders remains unclear. It is likely that additional factors influence the processing of homocysteine and that variations in homocysteine levels play a role in whether a person develops any of these conditions. A large number of genetic and environmental factors, most of which remain unknown, likely determine the risk of developing most common complex conditions.

 Chromosomal Location

Cytogenetic Location: 1p36.22, which is the short (p) arm of chromosome 1 at position 36.22

Molecular Location: base pairs 11,785,723 to 11,806,103 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20191205, GRCh38.p13) (NCBI)